Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
ACS Appl Mater Interfaces ; 13(1): 155-163, 2021 Jan 13.
Article in English | MEDLINE | ID: covidwho-997777

ABSTRACT

A substantial increase in the risk of hospital-acquired infections (HAIs) has greatly impacted the global healthcare industry. Harmful pathogens adhere to a variety of surfaces and infect personnel on contact, thereby promoting transmission to new hosts. This is particularly worrisome in the case of antibiotic-resistant pathogens, which constitute a growing threat to human health worldwide and require new preventative routes of disinfection. In this study, we have incorporated different loading levels of a porphyrin photosensitizer capable of generating reactive singlet oxygen in the presence of O2 and visible light in a water-soluble, photo-cross-linkable polymer coating, which was subsequently deposited on polymer microfibers. Two different application methods are considered, and the morphological and chemical characteristics of these coated fibers are analyzed to detect the presence of the coating and photosensitizer. To discern the efficacy of the fibers against pathogenic bacteria, photodynamic inactivation has been performed on two different bacterial strains, Staphylococcus aureus and antibiotic-resistant Escherichia coli, with population reductions of >99.9999 and 99.6%, respectively, after exposure to visible light for 1 h. In response to the current COVID-19 pandemic, we also confirm that these coated fibers can inactivate a human common cold coronavirus serving as a surrogate for the SARS-CoV-2 virus.


Subject(s)
COVID-19/virology , Photosensitizing Agents/pharmacology , Polymers/pharmacology , COVID-19/prevention & control , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Humans , Iatrogenic Disease/prevention & control , Light , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microfibrils/chemistry , Pandemics , Photosensitizing Agents/chemistry , Polymers/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Singlet Oxygen
2.
ACS Appl Mater Interfaces ; 12(44): 49442-49451, 2020 Nov 04.
Article in English | MEDLINE | ID: covidwho-889127

ABSTRACT

Cotton fabrics with durable and reusable daylight-induced antibacterial/antiviral functions were developed by using a novel fabrication process, which employs strong electrostatic interaction between cationic cotton fibers and anionic photosensitizers. The cationic cotton contains polycationic short chains produced by a self-propagation of 2-diehtylaminoehtyl chloride (DEAE-Cl) on the surface of cotton fibers. Then, the fabric (i.e., polyDEAE@cotton) can be readily functionalized with anionic photosensitizers like rose Bengal and sodium 2-anthraquinone sulfate to produce biocidal reactive oxygen species (ROS) under light exposure and consequently provide the photo-induced biocidal functions. The biocidal properties of the photo-induced fabrics (PIFs) were demonstrated by ROS production measurements, bactericidal performance against bacteria (e.g., E coli and L. innocua), and antiviral results against T7 bacteriophage. The PIFs achieved 99.9999% (6 log) reductions against bacteria and the bacteriophage within 60 min of daylight exposure. Moreover, the PIFs showcase excellent washability and photostability, making them ideal materials for reusable face masks and protective suits with improved biological protections compared with traditional PPE. This work demonstrated that the cationized cotton could serve as a platform for different functionalization applications, and the resulting fiber materials could inspire the development of reusable and sustainable PPE with significant bioprotective properties to fight the COVID-19 pandemic as well as the spread of other contagious diseases.


Subject(s)
Coronavirus Infections/prevention & control , Gossypium/virology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Textiles/virology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/pathogenicity , COVID-19 , Clothing/standards , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Gossypium/chemistry , Gossypium/microbiology , Humans , Hydrophobic and Hydrophilic Interactions , Light , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Textiles/microbiology
3.
Arch Virol ; 165(3): 609-618, 2020 Mar.
Article in English | MEDLINE | ID: covidwho-824459

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) targets the intestinal mucosa in pigs. To protect against PEDV invasion, a mucosal vaccine is utilized effectively. In this study, we generated a recombinant adenovirus vaccine encoding the heat-labile enterotoxin B (LTB) and the core neutralizing epitope (COE) of PEDV (rAd-LTB-COE). The fusion protein LTB-COE was successfully expressed by the recombinant adenovirus in HEK293 cells, and the immunogenicity of the vaccine candidate was assessed in BALB/c mice and piglets. Three intramuscular or oral vaccinations with rAd-LTB-COE at two-week intervals induced robust humoral and mucosal immune responses. Moreover, a cell-mediated immune response was promoted in immunized mice, and the neutralizing antibody inhibited both the vaccine strain and the emerging PEDV isolate. Immunization experiments in piglets revealed that rAd-LTB-COE was immunogenic and induced good immune responses in piglets. Further studies are required to evaluate the efficacy of rAd-LTB-COE against a highly virulent PEDV challenge.


Subject(s)
Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/immunology , Swine Diseases/prevention & control , Viral Vaccines/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Animals , Cell Line , Coronavirus Infections/immunology , Enterotoxins/genetics , Enterotoxins/immunology , Epitopes/genetics , Epitopes/immunology , Escherichia coli/immunology , Escherichia coli/pathogenicity , Female , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Porcine epidemic diarrhea virus/genetics , Recombinant Fusion Proteins/immunology , Swine , Swine Diseases/immunology , Swine Diseases/virology , Viral Vaccines/administration & dosage , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL